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Abstract—Ising machines have received growing interest as ef-
ficient and hardware-friendly solvers for combinatorial optimiza-
tion problems (COPs). They search for the absolute or approxi-
mate ground states of the Ising model with a proper annealing
process. In contrast to Ising machines built with superconductive
or optical circuits, complementary metal–oxide–semiconductor
(CMOS) Ising machines offer inexpensive fabrication, high scala-
bility, and easy integration with mainstream semiconductor chips.
As low-energy and CMOS-compatible emerging technologies,
spintronics and phase-transition devices offer functionalities that
can enhance the scalability and sampling performance of Ising
machines. In this article, we survey various approaches in the
process flow for solving COPs using CMOS, hybrid CMOS-
spintronic, and phase-transition devices. First, the methods for
formulating COPs as Ising problems and embedding Ising formu-
lations to the topology of the Ising machine are reviewed. Then,
Ising machines are classified by their underlying operational
principles and reviewed from a perspective of hardware imple-
mentation. CMOS solutions are advantageous with denser con-
nectivity, whereas hybrid CMOS-spintronic and phase-transition
device-based solutions show great potential in energy efficiency
and high performance. Finally, the challenges and prospects are
discussed for the Ising formulation, embedding process, and
implementation of Ising machines.

Index Terms—Ising machines, spintronics, phase-transition
devices, oscillator, annealing, combinatorial optimization.

I. Introduction
The Ising model was initially proposed for the theoretical

description of ferromagnetism. Ernst Ising then solved a one-
dimensional model consisting of a linear chain of spins inter-
acting only with their nearest neighbors [1]. It did not get the
attention of many physicists until Lars Onsager analytically
solved a two-dimensional Ising model and discovered the
phase transition phenomenon [2]. The magnetism disappears
when a magnet is heated above a certain temperature and

Copyright (c) 2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

T. Zhang, Q. Tao, B. Liu and J. Han are with the Department of Electrical
and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9,
Canada. (Corresponding author: Jie Han, jhan8@ualberta.ca)

A. Grimaldi, E. Raimondo and G. Finocchio are with the Department of
Mathematical and Computer Sciences, Physical Sciences and Earth Sciences,
University of Messina, Messina, 98166, Italy.

M. Jimenez, M. J. Avedillo, J. Nuñez, B. Linares-Barranco and T.
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appears when cooled below it, which is called a phase tran-
sition. Kenneth Wilson further obtained the values of critical
exponents to describe how different properties of a substance
change during a phase transition. It was then shown that a
series of unrelated substances share the same critical expo-
nents [3]. This critical phenomenon exists in many systems,
such as gas-liquid phase transition processes, turbulent flow,
stock markets, and economic systems. Two important features
of the system are the scale-invariance and persistent rela-
tionships over time. This universality indicates that a system
composed of many interacting individuals, described by a pair
of antonyms such as “up-down” and “with-without”, can be
studied based on the Ising model.

The statistical mechanics of the Ising model have been
explored for solving combinatorial optimization problems
(COPs) since the 1980s [4], [5]. Finding the ground state of the
Ising model is nondeterministic polynomial-time (NP)-hard.
For this reason, new computing models and algorithms are
being studied for pursuing further performance improvement in
the post-Moore era. In particular, domain-specific architectures
that take advantage of the hardware-friendly nature of an Ising
model-based solver, as known as Ising machines, have recently
garnered significant attention [6], [7]. Some concepts from
neural networks can be also applied to Ising machines to
increase their performance [8].

A COP is solved by an Ising machine, as illustrated in
Fig. 1. A real-world problem is first formulated as an Ising
problem. The Ising formulation based on a logical Ising model
(LIM) is then embedded into the topology of a physical Ising
model (PIM). Subsequently, the Ising machine searches for
suboptimal/optimal solutions. Finally, the obtained result is
interpreted as a solution for the original problem. Ising ma-
chines are classified into three types, based on the underlying
technologies:
• A quantum Ising machine implements the spins by using

superconducting flux quantum bits (called qubits) based
on quantum annealing. It achieves an ultra-fast search for
solutions due to the use of quantum fluctuations. A machine
with 128 qubits, called the D-Wave quantum annealer, was
first released in 2011 [6]. However, coherence must be
guaranteed to maintain the quantum superposition states of
qubits [9]. Therefore, it limits the connections between qubits.
Recently, an advanced machine with 5𝑘+ qubits with an
increased connectivity of each qubit to fifteen has been made
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Fig. 1. Solving a combinatorial optimization problem using an Ising machine.

possible [9]. However, due to technology limitations, a large
physical space and relatively high power are required to ensure
an ultra-low operating temperature [10], [11].

• With high scalability and flexible connectivity, an optical Ising
machine uses optical pulses as spins, which operates at room
temperature. The matrix-vector multiplication is implemented
using a Field Programmable Gate Array (FPGA). Honjo et al.
reported an optical Ising machine with more than 100𝑘 spins
and 10 billion spin-spin connections [12]. However, using
hundreds of meters of optical fibre cavities leads to stability
issues and high fabrication costs; relying on electronics
also restricts the optical system’s efficiency. This limitation
presents a challenge for system miniaturization and large-scale
integration. To deal with it, some efforts attempt to develop
systems based on coupled lasers [13], optoelectronics [14],
and exciton-polaritons [15], but with a sacrifice in scalability
and spin connectivity.

• Complementary metal oxide semiconductor (CMOS) and
CMOS compatible Ising machines emulate physical phenom-
ena based on heuristic algorithms [16] or implement a dynami-
cal system using hardware as classical spins [17]. Although the
speed and scalability are not competitive to quantum or optical
solutions, CMOS [18] or CMOS compatible circuits [19]
provide higher reliability, which present a potential industrial
solution for building Ising machines in the near future.

This article reviews the state-of-the-art studies throughout
the design process flow of Ising machines using conventional
and emerging technologies, in particular, CMOS and CMOS-
compatible ones, as shown in Fig. 1. First, we introduce the
quadratic unconstrained binary optimization (QUBO) formu-
lation for a COP to be fit into a LIM; approaches of con-
verting COPs represented by non-binary variables and higher-
order polynomials to the QUBO are then presented. An Ising
formulation needs to adapt to the topology of the PIM and
satisfy its bit width requirement. Therefore, the embedding
methods for transforming the topology and coefficients in a
LIM to fit in a PIM are illustrated. Subsequently, CMOS and
CMOS compatible circuit-based Ising machines are reviewed
from the perspectives of underlying operation principles and
circuit design.

This article is organized as follows. Sections II and III
present the Ising formulations of COPs and embedding methods,
respectively. CMOS and CMOS compatible Ising machines are
classified and introduced in Sections IV and V. Section VI
discusses existing implementations and emerging applications.
Section VII concludes this article and discusses future chal-
lenges and prospects.

II. Ising Formulation of Combinatorial Optimization
The Ising model mathematically simulates the ferromag-

netism in an array of magnetic spins. The Hamiltonian 𝐻 of
the Ising model with external magnetic fields is given by [20]

𝐻 (𝝈) = − 1
2
∑

𝑖, 𝑗 𝐽𝑖 𝑗𝜎𝑖𝜎𝑗 −
∑

𝑖 ℎ𝑖𝜎𝑖 , (1)

where 𝝈 is a vector of spin variables, 𝜎𝑖 (or 𝜎𝑗 ) denotes the
state of the 𝑖th (or 𝑗 th) spin that takes the value −1 (as the
downward state) or +1 (as the upward state), 𝐽𝑖 𝑗 is the interaction
coefficient for 𝜎𝑖 and 𝜎𝑗 , and ℎ𝑖 is the external magnetic field
on 𝜎𝑖 , as shown in Fig. 2. Although higher order Ising models
have recently been studied [21], we focus on the most-widely
considered model of (1) in this article.

(a) (b)

Fig. 2. The Ising model: (a) A 9-spin Ising model with 2D lattice topology,
and (b) An energy landscape.

To convert a COP to a problem of energy minimization of the
Ising model in (1), the first step is to formulate the COP to a
QUBO problem using linear and quadratic terms. LetB = {0, 1}
be a binary set and R be a real number set. A QUBO problem is
described by [22]

𝑓 (𝒙) = ∑
𝑖, 𝑗 𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +

∑
𝑖 𝑏𝑖𝑥𝑖 + 𝑐, (2)

where 𝒙 is a vector of binary variables, 𝑥𝑖 (or 𝑥 𝑗 ∈ B) is an
element in 𝒙, 𝑎𝑖 𝑗 ∈ R, 𝑏𝑖 ∈ R and 𝑐 ∈ R denote the weight
matrix element, the weight vector element and a constant scalar,
respectively. The constant scalar is usually disregarded.

The second step is to convert the QUBO formulation in (2) to
an Ising formulation using spin variables. Let 𝒙 = 1+𝝈

2 , where 𝒙
is the vector of binary variable in (2) and 𝝈 is a vector of spin
variables in (1). The QUBO formulation can be easily mapped to
the energy function of an Ising model in (1) by considering [23]

ℎ𝑖 = −( 𝑏𝑖2 +∑
𝑗
𝑎𝑖 𝑗

2 ), (3)
𝐽𝑖 𝑗 = − 𝑎𝑖 𝑗

2 . (4)

Lucas discussed the Ising formulations for COPs in de-
tail [24]. An open-source Python library for constructing
QUBOs from the objective functions has been developed [25].
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COPs can be categorized into three types [23]: (1) those without
constraints, such as the max-cut problem (MCP) and the number
partitioning problem (NPP); (2) those with equality constraints,
such as the traveling salesman problem (TSP), the quadratic
assignment problem (QAP), the maze problem (MAP), and
the graph partitioning problem (GPP); and (3) those with
inequality constraints, such as the knapsack problem (KP) and
the maximum satisfiability (MAX-SAT). The first class of COPs
is formulated by using only a cost function, i.e., a minimization
or maximization function. For the other two classes, a common
way is to first describe the constraints as minimization functions,
which are then added to the objective minimization function
to construct the cost function for the QUBO formulation.
Some parameters are introduced to balance the relative weight
between the objective function and the constraints, which can
be optimized for different Ising machines.

There are two challenges for the Ising formulation. One is how
to smooth the energy landscape of the Ising model to decrease
the probability of being stuck at the local minimum. Shirai et al.
reduced the number of spin variables by merging several into
one, thus simplifying the energy landscape [26]. However, the set
of merged variables must be carefully selected for each iteration
since the merging process might change the optimal solution
with the lowest Ising energy. Ohno et al. considered auxiliary
constraint conditions in the objective function that the optimal
solution must satisfy. It reduces the search space and thus
decreases the number of local minima in the energy landscape,
although at a cost of time to extract the valid configuration of
spin variables [27].

The other challenge is how to efficiently convert higher-order
polynomials to second-order terms. Many COPs are expressed
in general forms of higher-order polynomials with terms that
contain products of more than two binary variables. Therefore,
to fit in the Ising model formulated by using a second-order
polynomial, a third step, called quadratization, is additionally
required for reducing higher-order terms in the polynomial to
second-order. There are a variety of quadratization techniques to
convert higher-order polynomials [28], referred to as polynomial
unconstrained binary optimization, to Ising formulation. A
natural way is to transform 𝑘-th order interactions into quadratic
ones by introducing arbitrary variables based on Rosenberg’s
polynomial [29]. However, it will incur a polynomial increase
in the number of variables leading to an undesirable scaling
of the problem size [30], [31]. Therefore, Mandal et al.
proposed two compressed quadratization algorithms for sparse
higher-order Ising problems [32]. For the COPs expressed by
integer variables, there are three typical binary-integer encoding
methods: one-hot, binary, and unary encoding [33]. Unary
encoding can find a better solution for large KPs [34]. However,
questions such as whether the performance is independent of the
type of COPs and the choice of the Ising machine need further
investigation.

III. Embedding a Logical Ising Model (LIM) to a
Physical Ising Model (PIM)

In the Ising formulation, a COP is described by and formulated
to a LIM. In a LIM, any pair of spins can interact with

(a) (b)

(c) (d)

Fig. 3. Four types of topologies. (a) King’s graph [35], (b) Hexagonal
graph [36], (c) 3D lattice [37], and (d) Chimera graph [38].

each other [39]. However, the limitations in the physical
implementation of the Ising machine are not considered, such
as the topology and representation precision of the coupling
coefficients. In a PIM, interactions exist between pairs of spins
that are physically connected on the topology of a particular
Ising machine [39] and the numerical range for the coupling
coefficients is limited. There are different types of topologies.
Fig. 2(a) shows the simple 2D lattice topology and Fig. 3 presents
four other typical types. For example, given an Ising machine
with the King’s graph topology and 4-bit coupling coefficients, a
COP formulated as a fully connected LIM with double precision
coefficients cannot be naturally implemented in a PIM with a
sparsely connected topology and a reduced precision. Therefore,
topology and coefficient transformations are required to adapt a
LIM to the specific topology and numerical range in a PIM [40].

A. Topology Transformation
A technique called minor embedding (ME) has been consid-

ered for topology transformation [41]. It maps a spin in the LIM
to a set of spins, called a chain in the PIM. The spins in the same
chain are ferromagnetically coupled and in an identical state.
An ME process first identifies whether the LIM can be minor-
embedded, then schedules spin operations with many replicas,
and finally, decides the best-suited chain strength coupling [42].

Finding a minor embedding of the LIM into the PIM is an
NP-hard problem, which requires an exponentially increasing
runtime with the number of spins via exhaustive search [43]–
[45]. Therefore, various heuristic methods have recently been
developed for efficient ME. A well-known MinorMiner algo-
rithm repeatedly attempts to find a valid embedding from an
arbitrary LIM to an arbitrary PIM [42]. However, it is highly
dependent on the initial selection of chains [42]. Multiple trials
can mitigate this problem but at a cost of increased runtime.
Moreover, the computational time and the number of auxiliary
spins for constructing chains drastically increase when embed-
ding a dense LIM to a PIM with a sparse topology. To reduce
the search space, improved algorithms have been developed
for specific topology of LIMs and PIMs [46]–[48]. To save
the embedding overhead, Ohno et al. attempted to reduce the
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quadratic terms in an Ising formulation to make the connectivity
between spins less dense by introducing auxiliary penalties [27].
However, more constraints increase the complexity of the post-
processing to verify whether the solution found satisfies the hard
constraints.

B. Coefficient Transformation
A straightforward approach for coefficient transformation is

to truncate the less significant bits by performing right bit-shift
operations [40], referred to as the shift method. This method
is easy to implement, but it will likely change the ground state
of the original LIM, thus compromising the quality of solving
the targeted COP. The spin-adding method [40] introduces
auxiliary spins to convert the interaction and external magnetic
field coefficients in two separate steps, which guarantees the
exact mapping of the ground state of the LIM to that of the
PIM. However, the number of the introduced auxiliary spins
exponentially increases with the reduction of the bit-width of
the coefficients. Yachi et al. used both the shift method and
spin-adding method [49]. The former is employed until the
absolute values of coefficients fall below a specified threshold,
followed by the application of the latter method. This approach
uses a moderate number of redundant spins without a significant
change of the Hamiltonian in the LIM.

IV. CMOS Digital and Analog Ising Machines
A. CMOS Digital Ising Machines

CMOS digital Ising machines are developed by using different
heuristic algorithms to carry out Monte Carlo (MC) simulations
for the Ising model.

1) Classical Annealing Ising Machines
Classical annealing Ising machines emulate the thermal

annealing process in metallurgy using importance sampling-
based MC simulations [4]. At the beginning, the spin states are
initialized randomly at a high temperature. Subsequently, as the
temperature drops, the Hamiltonian decreases by flipping the
spin states, and the probability of spin flips decreases as well.
When the temperature becomes sufficiently low, the Ising model
converges into the (near-)ground state. The major components
are the annealing controller and the spin operator. The annealing
controller computes the temperature for annealing and generates
random numbers for computing the flip probability of the
spin states. The spin operator determines the new spin states
depending on the current states, the temperature, and random
numbers. In what follows, existing annealing Ising machines are
broadly classified into three categories, as shown in Fig. 4.

As shown in Fig. 4(a), CMOS annealing (CMOSA) examines
only one spin at a time and then updates it randomly [35],
[50], [52]. The states of disconnected spins are updated in each
iteration (i.e., one MC simulation step). Due to the sequential up-
date, CMOSA machines usually implement sparsely connected
topologies.

Digital annealing (DA) applies a parallel-trial scheme to in-
crease the spin flip probability to accelerate energy convergence.
It examines the flip of each spin separately in parallel, then
randomly selects and updates one of the spins that can be
flipped [51], [53], as shown in Fig. 4(b). The spin operator
assumes the current spin state is flipped and then calculates the

energy variation with an introduced dynamic offset generated
in the annealing controller. Each spin is said to be able to be
flipped if the energy variation is larger than a random number,
which indicates that flipping the spin state could decrease the
energy. One of the spins that can be flipped is chosen at the end
of each MC step.

To realize parallel spin update, the so-called parallel annealing
(PA) utilizes a two-layer structure, including momentum anneal-
ing (MA) [54] and stochastic cellular annealing (SCA) [18].
Each spin interacts with all replicas, but there is no interaction
between spins or between replicas. The interaction between a
spin and its replica, referred to as self-interaction, is computed
in the annealing controller. It increases with time to ensure that
the states of the spin and its replica are the same at the end
of annealing. In one MC step, the spin operator simultaneously
inspects all the spins and performs random update for each
replica spin, as shown in Fig. 4(c). Finally, the flipped replica
states are assigned to the corresponding spins for computation
in the next MC step.

Compared to the CMOSA machine, DA and PA machines
respectively require a dynamic offset generator and self-
interaction generator in the annealing controller, as shown in
Fig. 4. Although both DA and PA machines inspect all the spins
in the spin operator, only the PA machine updates all spin states
in each MC step. To enhance the solution quality, a replica
exchange MC sampling method, known as parallel tempering
(PT) has been considered for CMOSA and DA machines [55],
[56]. It introduces replicas of spins and then updates them
at different temperatures for annealing to traverse more local
minima. A PA machine is vulnerable to being stuck at local
minima. To address this issue, an exponentially decreasing
temperature function with the dynamic offset is applied in [57],
[58]. A ratio ranging from 1/𝑁 to 1 is used to limit the number
of spins to be flipped in one MC step [59].

2) Dynamics-inspired Classical Ising Machines
Dynamics-inspired Ising machines can be classified into two

types: one based on quantum annealing and the other using
simulations of oscillator networks.

The first class is known as simulated quantum annealing
(SQA) machines. SQA imitates quantum dynamics using an
MC method [60], [61]. This quantum MC method simulates
the quantum tunneling phenomena of a transverse-field Ising
model, which uses multiple replicas of spins called Trotters. The
transverse field in SQA plays a similar role as the temperature
in SA to control the probability of transition between the
states of spins. A general architecture is similar to the classical
annealing machine. In the annealing controller, the transverse
field decreases with MC steps, and random numbers are
generated. In each Trotter, an energy variation is computed in
series for each spin operator. The spin states are then updated in
a probabilistic manner determined by the energy variation and
random numbers. The computation starts from the first Trotter
and the spin states in the same Trotter are computed sequentially.
Current studies mainly focus on runtime acceleration by using
temporal [62]–[64] or spatial parallelism [62], [65].

Based on the simulations of oscillator networks, the second
class digitally models the dynamics of a network of Kerr-
nonlinear parametric oscillators using simulated bifurcation
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Fig. 4. Annealing Ising machines. (a) The CMOSA machine [50], (b) The DA machine [51], and (c) The PA machine [18].

(SB) algorithm [66]–[71], the degenerate optical parametric os-
cillators using emulated coherent Ising machines (ECIMs) [72],
[73], or the electronic nonlinear oscillators using emulated
oscillator Ising machines (EOIMs) [74], [75]. The discrete
spin state is given by a continuous spin variable related to
the oscillator position or phase. The signs of spin variables
indicate the spin states at the end of a search. This type
of Ising machines can be seen as an ordinary differential
equation solver of the spin variables with respect to time
using the Euler integration method. It is generally constructed
by an evolution controller for computing the time-changing
parameters, spin operators for evolving the spin variables with
time, and memory blocks for spin variables and coupling
coefficients. All the spin variables can be updated in parallel.
For an ECIM design, the evolution controller also generates
random numbers that follow a Gaussian distribution as noise to
the system. However, the SB and EOIM designs do not rely on
randomness. Thus, time evolutions of the spin variables in SB
and EOIM are predictable since the computation is deterministic
after random initialization. Compared to SB and ECIM designs
that require many multiply-accumulate (MAC) units, the EOIM
avoids massive multiplication operations. To improve hardware
efficiency, ternary and logarithmic quantization of spin variables
used in MACs are discussed in [69] for SB.

B. Classical Analog Oscillator based Ising Machines (OIMs)
Analog OIMs implemented using the conventional CMOS

technology have raised a growing interest due to their advantage
in such metrics as time-to-solution, energy-to-solution, and
solution quality. The oscillators are arranged in a crossbar
structure and the coupling circuits are implemented using
resistors. Different types of oscillators have been considered,
such as LC-tank [78], ring [36], [79], and Schmitt trigger
oscillators [80]. In this section, we categorize the OIMs based
on different implementations of the oscillators.

1) LC Oscillator-based Ising Machines (LC-OIMs)
The LC-OIM constructed with LC-tank oscillators was first

proposed in [78]. It takes advantage of the self-annealing

properties of an oscillator network and its ability to simulate
the Ising model with minor modifications. The spin state in the
Ising model is represented by the oscillator phase. In order to
convert the continuous oscillator phase into a bistable phase, a
subharmonic injection locking (SHIL) signal is introduced. The
coupling coefficients of the Ising model can be implemented
through either resistive or capacitive connections between
oscillators. The annealing process is simulated by increasing
the SHIL signal’s amplitude. When oscillators naturally settle
into a stable phase, the LC-OIM finds the (near-)ground state
of a given Ising model, which provides a solution for the COP.
Additionally, the LC-tank OIM has been expanded by using a
printed circuit board (PCB) [38], which outperforms all classical
annealing Ising machines by a significant margin.

2) Ring Oscillator-based Ising Machines (ROIMs)
LC-tank OIM implementations have shown great potential

for solving COPs. However, embedding an LC oscillator into a
chip has been a major challenge. Ahmed et al. [36], [79] have
demonstrated a fully programmable OIM chip with a hexagonal
topology by exploiting the high density and simplicity of ring
oscillators. In addition, Moy et al. [81] have reported a larger
ROIM chip that uses programmable transmission gates to couple
ring oscillators for a higher precision to represent coupling
coefficients.

3) Other Classical Analog Oscillator-based Ising Machines
To tackle specific challenges of the OIM, a range of oscillator

designs have been developed. One such design is the Schmitt
trigger OIM (ST-OIM) that eliminates the need of a SHIL
system. Vaidya et al. [80] demonstrated that by incorporating an
engineered feedback circuit into an electronic oscillator based
on the Schmitt trigger design, it can generate the SHIL signal
internally. This approach reduces the required die area and
improves the scalability of the OIM chip. The differential OIM
(DOIM) is another implementation of the OIM that achieves a
coupling precision of 6 bits. Graber et al. [82] showed that a
tunable differential oscillator design coupled with a digital-to-
analog circuit can achieve a much wider number range for the
coupling coefficients than any previous design, making OIMs
more capable of solving complex COPs. Last but not the least,
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Fig. 5. Overview of SIMs. (a) sMTJ-PSIM diagram (PL: pinned layer; FL: free layer). The orientation of the FL magnetization changes the resistance and, thus,
the measured 𝑉𝑂𝑈𝑇 . (b) The FL magnetization switches between the two energetically stable configurations (anti-parallel and parallel) thanks to thermal noise.
(c) The input voltage 𝑉𝐼𝑁 can tune the switching probability. The average of the 𝑉𝑂𝑈𝑇 as a function of the 𝑉𝐼𝑁 is a sigmoid. Taken with permission from [76].
(d) 3TMTJ-PSIM diagram. (e) A 𝐽𝑆𝑂𝑇 pulse can be used to force the FL magnetization in-plane and then out-of-plane again with a 50% probability. (f) This
probability can be tuned using the 𝐽𝑆𝑇𝑇 . The average of the z-component of the FL magnetization is a sigmoid. (g) 3TMTJ-OSIM diagram. The 𝐽𝑆𝑂𝑇 current
drives the in-plane self-oscillations of the FL magnetization. (h) The VCMA effect can be used to force binarization of the oscillation phase thanks to injection
locking. (i) SWIM diagram. Spin waves propagate through the YIG waveguide and interfere with each other due to the coupling delays in the line. (j) Control signal
that forms oscillations into radio-frequency pulses. Taken with permission from [77]. (k) Instantaneous phase signal of the spin waves. Taken with permission
from [77].

the tunable feature of the oscillator design is used to synchronize
all oscillators to a single frequency, ensuring consistent and
accurate results.

V. Emerging CMOS Compatible Ising Machines
A. Spintronic Ising Machines (SIMs)

One of the most promising candidates for the hardware
implementation of spins is the MTJ, thanks to its nanoscale
size, low energy consumption, and CMOS compatibility [83].
MTJs are suitable for the implementation of several Ising
machines’ paradigms, such as probabilistic computing with p-
bits [84], [19] and OIMs [17], as well as other computational
paradigms [85], [86]. The high-speed dynamics and low power
consumption of these devices potentially allow for a jump in
the speed of solving some classes of COPs by several orders
of magnitude [19] while also improving energy efficiency. In
this section, we list the main existing designs for MTJ-based
Ising machines. Each of these architectures can also be used in
conjunction with techniques inherited from classical annealing
Ising machines, such as DA, PA, SQA, and so on [61], [87].
However, the various tweaks necessary in order to implement
the various schemes will not be discussed in this section.

1) Superparamagnetic MTJ-based Probabilistic Spintronic
Ising Machines (sMTJ-PSIMs)

Probabilistic computing with p-bits can be used to implement
an Ising machine paradigm that employs a tunable bistable
stochastic unit as its spin [88], [89]. The p-bit continuously
fluctuates in the time domain between the up and down
configurations with a probability tuned by the states of its

topological neighboring p-bits. This can be implemented in
hardware by creating a network of MTJs, where the FL’s
magnetization of each device represents an Ising spin [19],
as shown schematically in Fig. 5(a). The change in the FL
magnetization changes the resistance and thus the measured
voltage 𝑉𝑂𝑈𝑇 .

The MTJ is designed so that thermal fluctuations are strong
enough to cause the magnetization to jump between the two
stable configurations (see Fig. 5(b)). The tuning of the 𝑖𝑡ℎ p-bit
is achieved by using an out-of-plane magnetic field or an input
voltage adjusted to the state of the topological neighbors (the
intensity is ∝ ∑

𝐽𝑖 𝑗𝑚 𝑗 + ℎ𝑖). Fig. 5(c) shows the dependence
of the average measured 𝑉𝑂𝑈𝑇 on the 𝑉𝐼𝑁 . One advantage of
this implementation is that the paradigm shifts from digitally
discrete (software implementation of probabilistic computing)
to intrinsically continuous dynamics. Thus, there is no need for
sequential updates of directly coupled p-bits [90], and the input
signal calculation can be performed in parallel [76], [19].

2) Three Terminal MTJ-based Probabilistic Spintronic Ising
Machines (3TMTJ-PSIMs)

A tunable p-bit can be implemented with three termi-
nal MTJs [17], combining current-induced spin-orbit-torque
(SOT) [91] and spin-transfer-torque (STT) [92], as shown
in Fig. 5(d). The dynamics of the FL magnetization of a
perpendicular MTJ with circular cross-section are described by
the Landau-Lifshitz-Gilbert-Slonczewski equation [93].

The MTJ is designed so that the energy landscape of the
FL magnetization has two stable minima along the z-axis
(Fig. 5(e)). After applying a large enough SOT current, the
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FL magnetization is brought to a metastable state aligned
along the direction of the spin-current (y-axis). When the
SOT is switched off, the FL magnetization relaxes, with equal
probability, towards one of the two z-axis directions [94]. To tune
the switching probability an STT is applied in the third terminal,
resulting in a sigmoidal behavior shown in Fig. 5(f), in which
each point is obtained by averaging over 104 realizations with
different seeds.

3) Three Terminal MTJ-based Oscillatory Spintronic Ising
Machines (3TMTJ-OSIMs)

In 3TMTJ-OSIMs, the Ising spin is obtained with the
phase binarization of the self-oscillations of the MTJ FL
magnetization [17]. The MTJ is designed with an elliptical cross-
section, an in-plane polarizer, and FL magnetization, as shown
in Fig. 5(g). The self-oscillation state is achieved by applying
a large enough SOT current [95]. The injection-locking signal
that drives the binarization can be an AC voltage-controlled
magnetic anisotropy (VCMA) effect or an AC STT current with
double the self-oscillation frequency (Fig. 5(h)).

4) Spinwave Ising Machines (SWIMs)
SWIMs use artificial spin states obtained from the phase

of spinwave RF pulses propagating through a medium [77].
Compared to paradigms such as CIMs, that use light and require
kilometers of optical fiber in their experimental setups [12], with
SWIMs it is possible to take advantage of the slow propagation
speed of spinwaves to achieve exceptionally small setups, with
waveguides that are only few centimeters long. Several wave
packets are propagated along the Yttrium Iron Garnet (YIG)
waveguide, with couplings being implemented through delay
cables that allow pulses to interact with each other, as illustrated
schematically in Fig. 5(i). The spinwaves are generated with the
control signal shown in Fig. 5(j). By interacting with each other,
the spinwaves oscillate with a binarized phase that encodes the
solution of the problem, see Fig. 5(k).

B. Phase-Transition Material-based Ising Machines (PTMIM)
Phase-transition material (PTM) undergoes metal-insulator

transitions under given electrical stimuli. That is, abrupt
switching occurs from/to a high resistivity state (insulating
phase) to/from a low resistivity state (metallic phase). Without
electrical stimuli, it tends to stabilize in the insulating phase.
When the applied voltage increases and the current density
flowing through it reaches a given amount, an insulator-to-metal
transition (IMT) occurs. Once in the metallic state, when the
voltage decreases and the current density drops below a second
given value, a metal-to-insulator transition (MIT) takes place.
Fig. 6(a) shows the I-V characteristic of a generic PTM two-
terminal device. The most widely used PTM is vanadium dioxide
(𝑉𝑂2). A compact oscillator has been proposed, as shown in
Fig. 6(b) [96]- [97]. Fig. 6(c) depicts waveforms for the oscillator
output. The state of the𝑉𝑂2 is also shown to better illustrate the
circuit behavior. 𝑉𝑂2,𝑆𝑇𝐴𝑇𝐸=‘INS’ means the device is in the
insulating state. 𝑉𝑂2,𝑆𝑇𝐴𝑇𝐸=‘MET’ corresponds to the device
in the metallic state. Assuming that the 𝑉𝑂2 is in an insulating
state (marked with “A” in Fig. 6(c)), the oscillator output is
discharged through the resistor. This increases the voltage drop
across the 𝑉𝑂2 (𝑉𝐷𝐷–𝑉𝑂𝑈𝑇 ) and so does the current through

it. Once enough current density circulates, it switches to the
metallic state (marked with “B” in Fig. 6(c)). Equivalently, using
the electrical model, switching to the metallic state occurs once
the 𝑉𝑂2 voltage reaches 𝑉𝐼𝑀𝑇 . The capacitor is then charged
through the 𝑉𝑂2. This charging is very fast because of the low
𝑅𝑀𝐸𝑇 value. The voltage seen by the 𝑉𝑂2 decreases until it
reaches 𝑉𝑀𝐼𝑇 and the transition from metal to insulator state
occurs. These nano-oscillators are attractive due to their area
and potential energy efficiency.

Coupled oscillators implemented with 𝑉𝑂2 devices have
been employed for pattern recognition applications, as reported
in [98] and [99]. However, one of the applications that is
currently attracting the most interest is the OIM [100]- [101]. As
in previously described OIMs, SHIL is a requirement for being
able to discretize oscillator phases into two possible values.
Some works on PTMIMs explore the impact of the SHIL scheme
on the performance of the OIMs [100]–[103]. In particular,
an experimental implementation of an Ising machine using
coupled phase-transition nano-oscillators with𝑉𝑂2 devices has
been reported [102]. This system solves the MCP of a 4-node
unweighted fully connected graph with a success probability
of 96.7% over 300 trials. This work establishes a link between
the natural stochasticity of the oscillators, the amplitude of the
SHIL signal and classical annealing. In [103], by analyzing
the performance of a network of coupled stochastic injection-
locked 𝑉𝑂2 oscillators in terms of its Lyapunov energy and its
continuous-time dynamics, how the dynamics can be harnessed
to perform classical annealing is presented.

In [100], experimental results with eight coupled 𝑉𝑂2
oscillators are reported. The system is configured to solve an
MCP for an unweighted Möbius Ladder graph, and delves
into the relationship between the shape of the SHIL and the
previously mentioned annealing mechanism. A SHIL signal
of increasing amplitude is explored. It shows that the success
probability can be improved from 30% to 96% when the SHIL
signal is smoothly increased to its maximum value for 600
oscillation cycles, instead of using a constant SHIL amplitude.
The rationale behind this is that it exploits noise (including
the stochasticity of 𝑉𝑂2) to escape from local energy minima.
In [101], different factors that impact the probability of the
system reaching the ground state of the Ising Hamiltonian and,
therefore, the optimum solution to the corresponding optimiza-
tion problem, are analyzed by electrical simulation. The initial
phase relationship of the oscillators, noise, and coupling strength
is considered in addition to the SHIL amplitude. Experimentally
calibrated numerical simulations of larger dense systems show
the high energy efficiency of 3.3 × 107 solutions/sec/Watt for
100-node dense MCPs. They exhibit 5× improvement over a
recently demonstrated memristor-based Hopfield network and
several orders of magnitude improvement over other candidates
such as central processing units (CPUs) and graphics processing
units (GPUs), quantum annealer and photonic Ising machine
approaches [100]. In [104], an experimental demonstration with
nine capacitively-coupled𝑉𝑂2 oscillators is reported for solving
MCP and MAX-3-SAT problems.

Capacitive coupling plays the role of anti-ferromagnetism
interactions in the Ising model. Ferromagnetism interactions re-
quire resistive coupling. A differential𝑉𝑂2 oscillator (Fig. 6(d))
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Fig. 6. (a) Generic I-V curve of a PTM device. The PTM oscillator: (b) circuit topology, and (c) operation waveforms in which points corresponding to
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has been proposed [105], [106], which resorts to a capacitive
coupling to force both outputs to be in anti-phase (180º
phase difference). The differential oscillator in Fig. 6(d) allows
implementing both types of interactions using only capacitive
or resistive coupling. This is very attractive from the point of
view of implementing coupling elements with memristors or
ferroelectronics devices in crossbar architectures. Additionally,
device mismatch has less impact on these differential structures
than on their single-ended counterparts [106].

VI. Discussion and Emerging Applications
Table I shows the main features of some state-of-the-art Ising

machines. It is important to note that a quantitative comparison
of the collected solutions is not straightforward since they differ
significantly in the number of spins (between 4 and 147𝑘),
the architecture used and the problem solved. Moreover, the
measurements in accuracy and time-to-solution heavily depend
on the benchmarks used and their size and topology, which is
not shown in Table I.

Significant progress has been made for CMOS-based solu-
tions. The heuristic algorithms for CMOS digital Ising machines
can also be implemented on general-purpose hardware, such
as CPUs and GPUs [62], [135]. The study on CMOS-based
solutions has evolved to multi-chip design for improving
the scalability of an Ising machine [136]. Moreover, most
of COPs are formulated using the LIM with an arbitrary
sparsely-connected topology to save hardware and reduce
memory overheads, so using programmable spin connections
becomes interesting [108]. Some emerging techniques, such
as approximate computing [18], [55], [58], [128], stochastic
computing [137], [138], in memory computing [139]–[144],
and machine learning [145]–[147] have recently shown great
potential for low power and high speed.

Ising machines based on the synchronization of coupled
oscillators exhibit advantages in terms of computation speed.
This is due to the parallel or collective computing on which they
are based. Pure CMOS solutions have been demonstrated with
a much larger number of spins than those based on emerging
devices such as phase transition materials. However, the latter
implementations show great potential in terms of power per
spin, especially considering that the reported results are for
an immature technology whose performance is expected to be
improved.

Table II summarizes emerging applications of Ising machines.
They include vehicle routing [114], [115], [148], control

parameter optimization for robotics [116], and wind farm
layout optimization [117]. In finance, the Ising machine facil-
itates portfolio management [118] and fraud detection [119],
while in production, it helps reduce worker travel distance
and required workforce [120], [121]. The Ising machine also
excels in optimizing communication systems [124], [125],
accelerating the signal decoding in multi-input multi-output
systems [123], and accelerating network migration [149]. In
quantum computing, it aids in encryption key exchange between
quantum network nodes [126] and error correction [127]. It also
shows promise in improving image segmentation quality [129],
optimizing circuits and PCB layouts [130], [133], [135], [150],
and molecule structure-based drug discovery [53].

VII. Summary, Challenges and Prospects
This article provides a systematic review of the recent findings

on (1) Ising formulations of COPs, (2) embedding an arbitrary
Ising problem to the topology of an Ising machine, and (3)
CMOS and CMOS-compatible Ising machines.

For COPs not easily encoded as QUBO instances, the effi-
ciency of using different formulations has a profound influence
on subsequent processing. The formulation strategies can be
characterized by the number of required spins and accuracy,
and there is no trivial way to identify the optimal approach for
a given COP. Therefore, the efficiency of formulation strategies
for a specific type of COP would be interesting to investigate.

For a CMOS Ising machine, the current approaches of
updating spin states in parallel result in significantly increased
hardware overhead. There is currently no suggestion that an
energy minimization schedule optimal for any topology exists.
As some problems require hard constraints while others do
not, or as some only have one exact solution while others have
many ground states, the optimal energy minimization schedule
changes. Moreover, one application of the Ising machine may
require high-quality approximate solutions in a very short time
while another may need to find the absolute ground state in the
shortest time possible. In any case, additional research to gather
further insights is required.

CMOS compatible Ising machines have remarkable potential
due to their high speed and energy efficiency, but they face
additional challenges due to the peculiarities of the device used.
For all categories of SIMs, perfecting the manufacturing of the
MTJ or the YIG (in the case of SWIMs) is fundamental to
have consistent physical properties to implement the Ising spin.
sMTJ-PSIMs face the additional challenge of memory retention,
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TABLE I
A Comparison of State-of-the-art Ising Machines

Ising Machines Comput. Para./ Platform/ # of Topology Coupling Coupling Spin Type Power Area COPHeuris. Alg. Technology Spin Precision Type per Spin per Spin
D-Wave’11 [107] QA Superconductor 2,048 Chimera N/A Qubit flux Qubit 25 𝑘𝑊 N/A N/A
Sci.Adv.’21 [12] CC Optics+FPGA 100𝑘 Complete 3 levels Coherent light DOPO pulse N/A N/A MCP
JSSCC’16 [37] CMOSA CMOS 65 nm 20𝑘 3D Lattice 2 bit SRAM SRAM 49 𝑚𝑊 270 𝜇𝑚2 MCP
ISSCC’21 [52] CMOSA CMOS 40 nm 147𝑘𝑎 King 5 bits On-chip mem. Register N/A 552 𝜇𝑚2 MCP
JSSC’24 [108] CMOSA CMOS 65 nm 1024 Lattice𝑏 8 bits SRAM Register 1.14 𝜇𝑊 330 𝜇𝑚2 MCP/SAT

JSSCC’23 [109] CMOSA CMOS 65 nm 6.4𝑘 King 2 bits SRAM DRAM 0.11 𝜇𝑊 48 𝜇𝑚2 MCP
Fujitsu’21 [110] DA Hybrid𝑐 100𝑘 Complete 64 bits N/A N/A N/A N/A QAP

Phys.Rev.E’19 [54] MA 4 GPUs 100𝑘 Complete 10 bits Proc. mem. Proc. mem. N/A N/A MCP
JSSC’20 [18] SCA CMOS 65 nm 512 Complete 5 bits SRAM Register 1.29 𝑚𝑊 N/A MCP

ISSCC’23 [59] Dynamic𝑑 CMOS 40 nm 2048 Complete 8 bits SRAM Register 14-46 𝜇𝑊 722 𝜇𝑚2 MCP
TETC’19 [65] SQA 2 FPGAs +CPU 32, 768 Complete 32 bits𝑒 Proc. mem. Proc. mem. N/A N/A NPP

Nat.Electron.’21 [111] SB 8 FPGAs 16384 Complete N/A On-chip mem. On-chip mem. N/A N/A MCP
Nat.Electron.’22 [81] Sync.+SHIL CMOS 65 nm 1968 King 5 levels TG coupling Osc. phase 21.3 𝜇𝑊 < 53 𝜇𝑚2 MCP

Nat.Electron.’23 [112] Sync.+SHIL CMOS 65 nm 48 Complete 29 levels TG coupling Osc. phase 2.3 𝑚𝑊 N/A MCP
JSSC’21 [36] Sync.+SHIL CMOS 65 nm 560 Hexagonal 1 bit Latch-based coup. Osc. phase 41 𝜇𝑊 946 𝜇𝑚2 MCP

Nat.Comput.’21 [113] Sync.+SHIL PCB 240 Chimera 3 levels Potentiometer Osc. phase 20.8 𝑚𝑊 N/A MCP
Commun.Phys.’23 [77] Sync.+SHIL YIG+FPGA 8 Nearest 1 bit Delay coupling Osc. phase 2 𝑊 70 𝑚𝑚2 MCP

Nat.’19 [76] Sync.+SHIL MTJs 8 Complete 12 bit On-chip mem. Mag. dir. 200 𝜇𝑊 N/A Fact.
Nat.Electron.’21 [100] Sync.+SHIL PTM Simulation 100 Complete 1 bit Capac. Osc. phase 12 𝜇𝑊 N/A MCP
Nat.Comm.’24 [104] Sync.+SHIL PTM 9 Complete 1 bit Capac. Osc. phase 180 𝜇𝑊 N/A MCP/SAT

Comput. Para./Heuris. Alg. (Computing Paradigms/Heuristic Algorithms): QA (Quantum annealing), CC (Coherent computing), SA (Simulated annealing),
CMOSA (CMOS annealing), DA (Digital annealing), MA (Momentum annealing), SCA (Stochastic cellular annealing), SQA (Simulated quantum annealing),
SB (Simulated bifurcation), Sync. + SHIL (Synchronization of coupled oscillators using SHIL); #: the number; Coeff. Prec.: coefficient precision; Acc.:
accuracy; TG: Transmission-gate coupling. a: It is a 9-chip design with an eight-way chip-to-chip connection; b: The spin connectivity is programmable (4
spins with 28 interactions); c: The system uses a hybrid software and hardware implementation; d: The computing method is dynamically configured using
CMOSA or SCA; e: Floating point number.

TABLE II
Emerging Applications of Ising Machines

Scenarios Application Fields Accuracy

Smart City
Transportation and vehicles [114], [115] M

Robotics [116] M
Energy system [117] M

Finance Portfolio and trading [118] H
Fraud detection [119] L

Industrial Production Warehouse assignment [120], [121] M
Shift scheduling [121], [122] L

Communication Networks MIMO detection [123] M
Resource allocation [124], [125] M

Quantum Computation Quantum key distribution [126] M
Quantum error correction [127] M

Medical, Chemical and Medical CT imaging [128], [129] M
Pharmaceutical applications Drug discovery [53] H

Materials and Devices
Materials informatics [130] M

Magnetic devices [131], [132] M
VLSI designs [133]–[135] M

‘H’, ‘M’, and ‘L’ indicate the accuracy requirement is high, moderate, or
low.

and, in all MTJ-based paradigms, the way the coupling between
spins is computed, changes the overall design drastically. If
it is computed in CMOS, the main issue becomes managing
the connection between the MTJs and the CMOS part. If it is
analogically computed, the issue becomes designing a robust
strategy to physically perform the MAC operation necessary
for the update. In SWIMs, managing complex topologies as the
number of spins increases is also an important issue to address.

PTMIMs-based oscillatory neural networks using 𝑉𝑂2 de-
vices for solving COPs hold great interest, driven by their poten-
tial for fast and energy-efficient problem resolution. Fabricating
𝑉𝑂2 devices according to semiconductor industry standards

allows for seamless integration at the back-end-of-line, ensuring
compatibility with CMOS technology. Recently, devices fabri-
cated on a silicon platform with a hafnium oxide interlayer have
been demonstrated [104]. The dynamics of coupled oscillators
allow for achieving a solution in reduced time due to the parallel
and continuous-time processing of the phases. Furthermore, the
combined exploitation of the variability of𝑉𝑂2 devices together
with subharmonic injection locking enables a very powerful
mechanism to maximize the success rate in reaching the optimal
solution. While the prospects are promising, there are still open
questions concerning the scaling of such systems, especially
regarding the adoption of sparse interconnection schemes.
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et al., “A spinwave Ising machine,” Commun. Phys., vol. 6, no. 1, p. 227,
2023.

[78] T. Wang and J. Roychowdhury, “OIM: Oscillator-based Ising machines
for solving combinatorial optimisation problems,” in UCNC. Springer,
2019, pp. 232–256.

[79] I. Ahmed, P.-W. Chiu, and C. H. Kim, “A probabilistic self-annealing
compute fabric based on 560 hexagonally coupled ring oscillators for

solving combinatorial optimization problems,” in IEEE Symp. VLSI
Circuits. IEEE, 2020, pp. 1–2.

[80] J. Vaidya, R. Surya Kanthi, and N. Shukla, “Creating electronic oscillator-
based Ising machines without external injection locking,” Sci. Rep.,
vol. 12, no. 1, p. 981, 2022.

[81] W. Moy, I. Ahmed, P.-w. Chiu, J. Moy, S. S. Sapatnekar, and C. H. Kim, “A
1,968-node coupled ring oscillator circuit for combinatorial optimization
problem solving,” Nat. Electron., vol. 5, no. 5, pp. 310–317, 2022.

[82] M. Graber and K. Hofmann, “A versatile & adjustable 400 node CMOS
oscillator based Ising machine to investigate and optimize the internal
computing principle,” in SOCC. IEEE, 2022, pp. 1–6.

[83] G. Finocchio, M. Di Ventra, K. Y. Camsari, K. Everschor-Sitte, P. Khalili
Amiri, and Z. Zeng, “The promise of spintronics for unconventional
computing,” J. Magn. Magn. Mater., vol. 521, p. 167506, 2021.
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